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I t  is well-known that molecular attraction forces, of the van der Waals type for rubber-like materials, act in 
the contact area between a polished and cleaned rigid ball and the smooth and flat surface of a rubber sheet; 
they increase the size of this contact area compared with the value which can be deduced from the classical 
theory of elasticity. Moreover, numerous experiments have shown that these forces are responsible for the 
existence of a kinetin of detachment in a pull-off test. In this study, we demonstrate that these long-range 
attractive forces also alter drastically the rebound of a rigid ball on a rubber surface. It is shown that during 
the movement of the ball out of contact with the rubber, work is done to peel the rubber offthe ball surface 
and that this energy is the amount by which the surface adhesion effect reduces the resilience. A simple energy 
balance theory allows us to predictthe rebound height and we show that there is a critical drop height below 
which the ball sticks and does not bounce at all. I t  is demonstrated that the simple energy balance theory 
proposed gives a correct prediction of the various observed rebound heights for several balls, when the 
critical drop height corresponding to a particular ball is known. In addition, this type ofexperiment provides 
us with a possible valuation of the thermodynamic work of adhesion (Duprt's energy of adhesion) and also 
allows us to determine the viscoelastic behaviour of the rubber-like material tested. 

KEY WORDS: adherence; adhesion; contact area of a ball; duprk's energy of adhesion; elastomers; fracture 
mechanics concepts; rebound of a ball; rubber-like materials; viscoelastic behaviour 

INTRODUCTION 

In 1971, it was first shown' that rubber surfaces made optically smooth2 can be 
brought into intimate contact with other surfaces equally smooth and, secondly, that 
the contact area between a rigid sphere and the Aat and smooth surface of a rubber-like 
material is greater than the value which can be deduced from the classical theory of 
elastic c ~ n t a c t , ~  because of the intervention of molecular attraction forces, of the van 
der Waals type for elastomers. In this work, Johnson et al.' used an energy balance 
theory in order to predict the correct size of the equilibrium contact between a spherical 
indenter and an elastic body as a function of the radius of this indenter, the normal 
applied load, the elastic modulus and the surface energy of the elastic solid. From this 

*One of a Collection of papers honoring Jacques Schultz, the recipient in February 1995 of The Adhesion 
Society Award for Excellence in Adhesion Science, Sponsored by  3M. 
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6 M .  BARQUINS AND J.-C. CHARMET 

tremendous work, the kinetics of detachment in a pull-off test has been studied using 
fracture mechanics concepts in order to predict the contact duration in numerous 
constant unloading  experiment^.^ Also, it has been observed that, under some circum- 
stances, closely related to the intervention of these forces, a rigid ball strongly sticks 
against a glass-smooth rubber surface and does not rebound at a1L5 

Mainly, the understanding of the bouncing process of small particles on various 
substrates is important for numerous applications including aerosol physics and coatings 
technology for which a strong adhesion is wanted. In the literature, several experiments 
are described and theories are proposed to explain why small particles may be 
captured, so that no rebound Particularly, these theories have attempted to 
combine both the: surface effects and bulk dissipative deformation of solids. 

The present paper reports numerous investigations made on ball rebound off rubber 
in the case where projectiles sizes are millimetric, i.e., these are not small particles. A 
simple theory is proposed in order to predict conditions required to observe, or not, the 
rebound of polished steel balls and other projectiles from the flat and smooth surface of 
a soft natural rubber sample. This theory assumes only that the impact of a ball or 
projectile is described by the classical Hertz t h e ~ r y , ~  whereas the extraction from the 
rubber block follo'ws the Johnson et al.' theory, as in a pull-off experiment,for instance. 
The very good agreement between experimental data and theoretical curves validates 
the simple theory proposed,12 which is quite similar to the model independently 
proposed by Johnson and P ~ l l o c k . ' ~  

ADHESIVE CONTACT OF A SPHERE 

It is now well-known' that if a blunt, rigid asperity is normally brought near a smooth 
surface of a highly elastic solid, such as natural rubber, as soon as the distance becomes 
smaller than a few tenths of one pm, the two solids undergo molecular attraction of the 
van der Waals force type. These forces are predominant for distances greater than 2 nm 
(and they remain measurable for distances less than about 200 nm), and are the prime 
cause of the adhesion of solids, because stronger bonding forces are usually screened off 
by impurities and contaminants deposited or adsorbed on solid surfaces. When contact 
is made under an applied load, P, molecular attraction forces act in and around the area 
of contact and these forces are superimposed on the load P so that the contact seems to 
be maintained by an apparent normal load PI > P .  The difference ( P ,  - P )  represents 
an adhesive force and depends on the load P, on the contact geometry (shape and size) 
and on elastic and surface properties of the bodies in contact. 

Our understanding of the adhision of elastic solids made a marked advance with the 
introduction of the energy balance concept by KendallL4 in 1971. This theory is based 
on optimizing the total energy (potential, elastic and surface energies) of the system at 
equilibrium, the elastic adherence force, i.e. the critical value of the tensile force Pequi at 
equilibrium, being derived by equating to zero the first derivative of the total energy. 
But this procedure cannot give information about the stability of the system at 
equilibrium, that depends on the second derivative of the total energy. This is the 
reason why Maugis and Barquins4 have been led to reintroduce the concepts of 
fracture mechanics, such as the strain energy release rate, G, in order to study the 
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REBOUNDOF A RIGID BALL ON A RUBBER SURFACE 7 

stability by the sign of the derivative of G with regard to area of contact. This approach 
enables one to consider the edge of the contact area as a crack tip and to study the 
kinetics of crack propagation of this boundary uersus time, as will be seen later. 

Concerning the problem of the adhesive contact between a rigid sphere and the flat 
and smooth surface of a rubber-like material, the correct solution was found in 1971 by 
Johnson et a/.' using an energy balance theory. The radius, a, of the contact area is 
calculated as a function of the load, P, the radius, R ,  of the rigid sphere, the elastic 
parameter, K ,  defined from Young's modulus, E, and Poisson's ratio, p, of the elastic 
body such that K = (4/3)E/(1- p'), and the thermodynamic work of adhesion 
(Duprgs energy), w, defined from the surface (yi) and interface (yij) energies of solids 1 
and 2 contact by M* = + y 2  - yI2: 

a3 = P R / K  + R(3xwR + ( 6 ~ c w R P + ( 3 n w R ) ~ ) " * ) / K  

The second term on the right-hand side of the equilibrium relationship represents the 
correction to the classical Hertz theory3 and it becomes predominant when the applied 
load, P, tends towards zero. For this particular contact geometry of sphere on flat, the 
apparent load, P,, is given by: 

PI = a3 KIR 

and the normal elastic penetration, 6, of the spherical rigid punch is: 

6 = a 2 / R  - 2 ( a 2 K  - P R ) / 3 u K R  (3)  

the first term of the right-hand side corresponding to the Hertz's solution. 
I t  has been shown" that the above relations can be directly found from the 

generalization by Sneddon16 of Hertz's calculations to surfaces of any shape having 
axial symmetry, using Hankel's transformation and Abel's integral, if an integration 
constant. x( I ) ,  is assumed to be non-zero. Commonly, for non-adhesive axisymmetric 
contacts, this constant is cancelled in order to have zero normal stresses at the edge of 
the contact area. This constant, I( l), which depends on the shape of the axisymmetrical 
indenter, is proportional to the stress intensity factor, K, ,  at the edge of the contact area, 
so that calculations of the normal stress and the discontinuity of the elastic displace- 
ment (penetration of the indenter) lead to formulae identical with those of fracture 
mechanics in the opening mode of crack propagation (Mode 1). It, therefore, seems that 
the contact edge may be seen as a crack tip that advances or recedes if the normal 
applied load, P, is decreased or increased. 

The edge of the contact area, like any three-dimensional crack, is subjected locally to 
a plane strain state so that the strain energy release rate, G, can be written: 

G=(1/2)(1 - p z ) K : / E  (4) 

where the factor (lj2) appears because the rigid indenter is not deformable. If P ,  
represents the apparent load that, for a non-adhesive contact (i.e. if the Sneddon's 
integration constant ~ ( 1 )  is zero), gives the same radius of contact area as under the 
load, P, if molecular attraction forces can act (i.e. ~ ( 1 )  # 0), then it was shown'5 that 
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8 M. BAkQUlNS AND J.-C. CHARMET 

K, = (PI - P)/(4na3)’/2, so that Equation (4) becomes: 

G = ( P ,  - P ) 2 / 6 ~ R P 1  (5 )  

At equilibrium G = w, so that Equation (5) is the equilibrium relationship, where P ,  
is given by Equation (2), as derived by Johnson et a/.’ on the basis of the energy balance 
theory. Figure la shows that, at the edge of the adhesive contact area under the normal 
applied load, P ,  the junction of the elastic solid to a rigid (glass) spherical indenter is 
vertical, as in the case of a half Griffith’s crack, i.e. the geometry of fracture mechanics. 
For comparison, Figure 1 b shows the profile corresponding to a non-adhesive contact, 
characterized by a tangential junction, under the Hertzian load P ,  > P which is 
necessary to produce the same radius of contact area. 

KINETICS OF ADHERENCE 

The equilibrium state defined by G = w (Figure la) may be disrupted by a change in 
normal applied load, P ,  or in elastic penetration, 6. If G < w, the contact area increases 
and the crack recedes, so that a healing phenomenon can be observed. Conversely, if 
G > w, the two solids begin to separate and the contact area decreases. So, it is 
important to point out now that these two behaviours, formation then rupture of 
contact, occur successively in the rebound of a rigid ball against the flat and smooth 
surface of a rubber block. 

If the solids are separating (G > w), the difference (G - w) represents the crack 
extension force applied to the edge of the contact area which can be seen as a crack tip. 
(GL w )  is the “motive”energy of the crack per unit of surface of the zone crossed by this 

a 

b 

FIGURE 1 Newton’s rings patterns photographed in normally-incident monochromatic light and corre- 
sponding profiles of the free surface at the immediate vicinity of the edge of contact between a glass ball and 
the flat and smooth surface of a natural rubber sample: (a) adhesive contact under the load, P; (b) 
non-adhesive contact under the Hertzian load P ,  > P that produces the same radius of contact. 
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REBOUND OF A RIGID BALL ON A RUBBER SURFACE 9 

crack during its propagation. In a purely elastic solid, a crack subjected to a constant 
force (C - w), per unit of length of the crack, continuously accelerates up to the 
Rayleigh wave speed. In a viscoelastic solid, such as a rubber-like material, the crack 
undergoes a viscous drag so that it takes on a limiting propagation speed, V ,  which is a 
function of the ambient temperature. On the assumption, confirmed by numerous 
experiments, that the viscoelastic losses are only localized at the crack tip, i.e. gross 
displacements are purely elastic, the general equation of the kinetics of adherence has 
been p r ~ p o s e d : ~  

G - w = ~ . @ ( a p V )  (6 )  

where the left-hand side of the equation is the driving energy for the crack and the 
right-hand side is the viscous drag, which is proportional to DuprC's energy of 
adhesion, w, as first suggested by Gent and Schultz17 in 1972. The main result is that the 
crack takes the propagation speed, V ,  so that corresponding viscoelastic losses exactly 
balance the driving energy (G - w); this is the reason why the symbol "=" is used in 
Equation (6). @(aT V) is a dimensionless function depending only on the crack 
propagation speed, 'v, and on the temperature, T, through the shift factor, aT, of the 
Williams-Landel-Ferry '" (WLF) transformation. The function @ ( a T .  V) is characteris- 
tic of the rubber-like material studied for the interfacial crack propagation in opening 
mode (Mode I) and may be directly linked to the frequency dependence of the 
imaginary component of Young's rn~du lus . ' ~  Knowledge of the function @(a,. V), by 
simple peeling experiments for instance, makes it possible to predict the change in 
contact.area in all circumstances. 

Numerous meticulous adherence experiments carried out with glass spheres, flat 
glass punches and flat-ended glass balls in contact with polyurethane PSM4 Vishays', 
NR and SBR surfaces in pull-off tests at fixed fixed grip conditions,2' cyclic 
loading-unloadingzz (as in a repetitive push-on/pull-off test between two imposed 
loads), fixed crosshead velocity with the help of a tensile machine,23 peeling from flat 
glass substrate of relaxed or stretched rubber  sheet^^.^^.^' (spontaneous delamination), 
and equilibrium contact geometry and rolling of glass, stainless steel and PMMA 
cylinders,26-28 verify all the theoretical predictions. 

Whatever the surface properties of the tested solids, or of such experimental 
parameters as geometry of contact, speed of separation, stiffness of testing machine, 
temperature, relative humidity, initial applied load which presses together the two 
solids and its duration of application, all results can be represented by a single master 
curve @(ap  V) - up V diagram. So, it has been shown4 that over a large range of crack 
propagation speeds, V ,  the function @(a,.. V) varies as a power function of the speed: 

(7) @(aT.  V )  = k(T). V" 
where k(7') is a parameter depending only on the temperature, T, and n is a characteris- 
tic parameter of the rubber-like material tested. For instance, n takes the value 0.60 for 
polyurethane4 (PSM4 Vishay"), and n = 0.55 for a pure latex soft natural rubber 
sample,26*28 using dicumyl peroxide vulcanization, as shown in Figure 2. 

It is important to point out that the main interest of Equation (6) is that surface 
properties (w)  and viscoelastic losses (@(a,. V)) are clearly decoupled from the loading 
conditions and the system geometry (rigid sphere-elastic flat surface), which only 
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10 M. BARQUINS A N D  J.-C. CHARMET 

1000 

3 
3 

II 100 

8 

\ 
h 

@ 

10 

1 

I 

1 
1 

.01 .1  1 1 0  100  

crack propagation speed V (mm/s) 

FIGURE 2 Master curve showing the dissipative dimensionless function @(ar.V) = (G-w)/w of the soft 
natural rubber used, as a function of the crack propagation speed in opening mode at the interface with a rigid 
solid.*' 

appear in the strain energy release rate formula. Predictions assume only that: 1) the 
kinetic energy is negligible, i.e. the contact duration is adequate (not too short) to form 
an adhesive contact; 2) the rupture is adhesive, that is to say the propagation occurs at 
the interface of the two solids in contact so that experiments at equilibrium (I/= 0) give 
Duprk's energy, w, of adhesion, and finally, 3) viscous losses are limited to the crack tip 
where strain rates are high, which implies that gross displacements are purely elastic 
and the strain energy release rate, G, can still be calculated by the Hertz theory during 
the crack propagation. All these conditions are satisfied for the contact between a rigid 
sphere and the flat surface of a rubber-like material block. 

REBOUND OF RIGID BALLS 

From concepts and experimental data outlined above, we have studied the rebound of 
a polished rigid ball (steel ball) on the flat and glass-smooth surface of a soft natural 
rubber sample. 

Starting from the observation that there is a critical release altitude below which a 
rigid ball sticks on a rubber sample and does not rebound at all, numerous experiments 
were carried out to measure with accuracy this critical altitude and rebound heights 
when molecular attraction forces act. A simple energy balance theory is proposed to 
predict correctly the rebound height of several different-sized polished stainless steel 
balls, colliding with a horizontal, plane, glass-smooth and cleaned surface of a natural 
rubber thick sample. 
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REBOUND OF A RIGID BALL O N  A RUBBER SURFACE 1 1  

The apparatus used for this study is schematically presented in Figure 3. A glass- 
smooth, polished steel ball was kept in position under a glass sheet with the help of a 
magnet. The vertical distance between the bottom of this ball and the cleaned surface of 
a thick (16 mm) and soft natural rubber block was measured accurately. Six steel balls 
were employed whose diameter and mass are given in Table I. In addition, four 
indenters were made from steel balls in order to obtain, on the one hand, three masses 
with the same diameter and, on the other hand, three radii of curvature with the same 
mass (Table I). 

All experiments were initiated by gently raising the magnet from the glass sheet 
and rebound heights were recorded with the help of a video camera coupled to a 
video recorder in order to make accurate measurements. The “pure latex” natural 
rubber soft sample tested was obtained by moulding the compound against a glass- 
smooth polished steel plate, using the following vulcanization conditions: 2.0 parts 
of dicumyl peroxide and a temperature of 150°C during 20 min, so that the glass 
transition temperature was equal to -68°C. The mechanical properties of the 
rubber specimen thus obtained were Young’s modulus E = 0.89 MPa and Poisson’s 
ratio p = 0.5, corresponding to the characteristic elasticity parameter K equal to 
1.582 MPa. 

h 

t 
mape t  

steel ball 
- 

FIGURE 3 Schematic view of the apparatus used to study the rebound of a rigid ball against the surface 
of a rubber-like material. To prevent the action of van der Waals forces and to determine the resilience 
of the rubber sample, some experiments were carried out with rubber surfaces dusted with talcum 
powder. 
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12 M. BARQUINS AND J.-C. CHARMET 

TABLE I 
Diameters and masses of the ten different indenters, balls and projectiles, 

used in the rebound experiments 

Indenters Diameter of curvature (mm) Mass (g) 

Balls 
No. I 
” 2 
“ 3 
” 4 
” 5 
” 6 
Projectiles 
No. I 
” 2 
” 3 
” 4 

2 
3 
4 
6 
8 
10 

0.033 
0.112 
0.262 
0.876 
2.092 
4.077 

0.173 
0.327 
0.262 
0.262 

THEORETICAL CONSIDERATIONS 

First, let us consider a rigid ball (of weight Mg) colliding with a non-adhesive plane 
(rubber surface contaminated with talcum powder to prevent adhesion of the ball) with 
a relative speed v = (2gh)’12. The ratio a. = h‘/h, where h (respectively, h’) the release 
altitude (respectively rebound height), characterizes the losses in the bulk of the 
viscoelastic material, without intervention of molecular attraction forces. Due to the 
shortness of the collision time29 the penetration of the ball into the rubber surface 
occurs according to the classical theory of Hertz, even for an adhesive surface, so that 
maximum values of radius, amax, of the contact area and the elastic penetration depth, 
d,,,, are closely related to the release altitude, h: 

amax= ~ h ” ’  (8) 

a,,,= ~ h ~ / ’  (9) 
where E = ((5/2)Mg~x;’~R~/K)’/~ and K = E2/R, g being the acceleration due to gravity. 

Assuming that the duration of penetration is equal to the duration of ejection from 
the rubber surface, each time it takes the value:30 

T = 96/v (10) 

v being the drop speed at  the impact instant (v  = (2gh)’I2) and 8 the parameter equal to: 

(1 1) 0 = (3.29/2)(256/225)’” CCO ‘ I 5  

so that the ejection time of the ball can be rewritten: 

5 = ~K(2g)-”Zh-’”o (12) 
Assuming that molecular attraction forces act, it is obvious that they play an important 
role only during the ejection of the ball, due to the shortness of the collision time. The 
separation never occurs as a whole but the area of contact is progressively reduced until 
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REBOUND OF A RIGID BALL ON A RUBBER SURFACE 13 

complete separation is achieved. This reduction in contact area can be considered as 
resulting from the propagation of a crack, and the concepts of fracture mechanks can 
be used. During its propagation, the crack undergoes a drag in proportion to w and is a 
function of the crack velocity, V =  -du/dt, as already mentioned above. 

The energy, Wmotor, actually available when the maximum penetration depth, d,,,, 
given by Equation (9) occurs, is given by: 

Wmotor = a0 M g h  (13) 

The energy dissipated by the crack propagation during the ejection of the ball can be 
written as kwV", where k and n are material dependent parameters (Equations (6) and 
(7)). This energy dissipated during the separation is the sum of two terms: the interfacial 
energy given by wS (where S is the contact area, S = nu') and the energy dissipated in 
the immediate vicinity of the crack, Wdrag, given by the integration of the drag during 
the separation time. Unfortunately, the kinetics of the separation is unknown. Neverthe- 
less, it is possible to assume (and confirm by further experiments), as in the Hertz 
theory,30 that the ejection time is equal to the time of penetration, T, and to take the 
ratio urn, JT as an estimated average of the velocity ( V )  of the crack, so that: 

( v )  = u,,xv/~o = ( ~ ( 2 ~ ) y & o ) h 3 / * 0  (14) 

Taking into account Equations (6) and (7) rewritten using the estimated speed ( V )  of 
the crack, one obtains: 

( ( G - w ) / w ) = k ( V ) "  (15) 

Using the estimated average crack speed, ( V ) ,  the interfacial dissipation term, Wdrag, is 
given by: 

Wdrag = kwnarna:( V)" = AE' k ~ ( R ( 2 g ) " ~ / ~ O ) " h ' ~ +  3n"10 (16) 

and scales as kwS( V)". Due to the large value of the coefficient, k,  (k >> 1)28, the 
interfacial energy, wS, is negligible compared with the interfacial dissipation term, 
Wdragr and the energy balance: WmoI0, = w s  + Wd,, reduces to wm,Io, = Wdrag' This 
balance gives the critical release altitude below which sticking occurs: 

(17) h, = (A/B)10/(6 - 3") 

with: 

A = ((2/3.29)(225/256)1/5)"(5/2)(2 -n)15R(4+ 3n)''(2g)"'Znkw 

and 
B =(Mg)(3+fl)/5K(2-n)/5 (8-n)/10 

a0 

For h > h,, the rebound height is obviously provided by: 

when molecular attraction forces act. If the surface is dusted with talcum powder, 
for instance, the rebound height is commonly given by h' = a,h, h being the release 
altitude. 
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14 M. BARQUINS AND J.-C. CHARMET 

EXPERIMENTAL RESULTS AND DISCUSSION 

In a first set of experiments, six rigid and polished balls, made of steel (from ball 
bearings), were dropped onto the horizontal, plane, smooth, cleaned (with pure 
ethanol) and dried surface of the thick (16 mm) natural rubber sample (symbols and 
curves I in Fig. 4). The energy restitution coefficient, ao, was determined with the two 
balls nos. 3 and 6 (Table I), when the surface was dusted with talcum powder to prevent 
adhesion of the balls (symbols and rectilinear curve 11). It was calculated as a. = 0.625, 
which is a value commonly found on a soft natural rubber sample when molecular 
attraction forces do not act. 

Concerning heavy lines I, corresponding to a non-contaminated rubber surface, 
these are theoretical curves obtained by the following procedure. For each ball, 
numbered from 1 to 6 in Table I, the critical release altitude was accurately measured so 
that the mean value of the parameter (k .w) ,  product of the temperature factor and the 
DuprC energy of adhesion, was correctly determined from Equation (17): 
(k .w)  = 35.15mJ.m-2.55.s0.55. Taking into account the value k = 1440m-0.55.s0.55, 
previously assessed in similar ambient conditions,28 one deduces that Duprt's energy 
of adhesion is equal to w = 24mJ.m-', a low value which is reasonable taking into 
account the shortness of the collision time.29 So, if the ambient conditions (temperature 

'0° T h'(mm) 

600 -- 

so0 -- 

400 -- 

300 -- 

200 -- 

loo -- 

-100 1 

/ I1 

FIGURE 4 Rebound heights ofsix polished balls,made of stainless steel (each diameter and mass are listed 
in Table I), dropped on the horizontal, plane and smooth surface of a soft natural rubber sample (Young's 
modulus E = 0.89 MPa and Poisson's ratio p = 0.5). Curves I: the surface was cleaned with pure ethanol and 
dried with air, so that surface effects, due to van der Waals forces, were superimposed on bulk viscoelastic 
properties. Curve 11: the surface was dusted with talcum powder to prevent adhesion. Experimental data 
(symbols) verify quite good computed predictions (heavy lines). 
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REBOUND OF A RIGID BALL ON A RUBBER SURFACE 15 

and relative humidity) are known, this rebound method offers the advantage of 
measuring the Duprk energy of adhesion for short contact time. 

Starting from the experimentally-determined estimate of (k .w) ,  the dissipated 
energy, Wdrag, may be evaluated from Equation (16) and also the computed rebound 
height, from Equation (18), W,,,,, being computed from Equation (13). Figure 4 allows 
us to conclude that there is a very good agreement between the experimental data 
(symbols) and the rebound height predicted by the energy balance criterion proposed 
(heavy lines). 

For balls made of the same material as these used in experiments previously 
described (Figure4), the mass, M, is proportional to the cube of the radius of curvature, 
R ,  so that, in Equation (17), the ratio A/B varies as R - ' .  Hence, the critical release 
altitude, h,, below which sticking occurs, varies as: 

(19) 

a negative power of R which is consistent with the recent theory of Johnson and 
P ~ l l o c k . ' ~  Figure 5 shows h, as a function of the ball diameter in log-log coordinates 
and the linear regression of all the points gives the slope t,h = - 2.28, so that the value 
n = 0.54 can be deduced from Equation (19). There is a more accurate procedure to 
determine the parameter n, which explain the viscoelastic behaviour of the rubber-like 
material tested, as seen further on. 

In a second set of experiments, the main goal was to predict the rebound height of 
several projectiles presenting a spherical cap made from a steel ball, as shown in Table 1. 

h, x R- 10/(6 - 3n) 

2.5 

2 

-- 

-- 

1.5 -- 

1 -- 

0.5 -- 

O J  I I I 

0.2 0.4 0.6 0.8 1 

FIGURE 5 Master curve, in log-log coordinates, regrouping all the adhesive rebound critical heights 
measured with the six balls (data from Figure 4), which allows one to determine from the slope, ((I, of this 
rectilinear curve. the parameter n characterizing the viscoelastic behaviour of the natural rubber sample 
tested. 
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16 M. BARQUINS AND J.-C. CHARMET 

Figure 6 shows the ratio between the rebound height, h', and the corresponding release 
altitude, h, uersus this release altitude for the same diameter of curvature (4 mm) but 
three different masses, the intermediate indenter being the steel ball no. 3 (Table I) as 
previously used. One can see that the agreement between experiment and theory is 
quite good, experimental points coinciding with computed curves drawn using the 
procedure already described. Obviously, all these curves tend towards the asymptotic 
value h'/h = cto = 0.625, and it is clear that this asymptotic value is more rapidly reached 
with heavy loads, at constant diameter of curvature. 

Conversely, Figure 7 shows the ratio between the rebound height h' and the 
corresponding release altitude, h, uersus this release altitude for the same mass 
M = 0.262 g and three diameters of curvature, the intermediate indenter being the steel 
ball no. 3 (Table 1) as in the previous rebound experiments. When the diameter of 
curvature increases at constant mass, the area of contact increases also, so that the 
prevalence of van der Waals forces increases and this is why the ratio h'/h, at imposed 
release altitude, h, decreases regularly with increasing diameter. Again, one can see that 
the agreement is quite good between experimental data and computed curves deduced 
from the simple energy balance theory proposed. 

Equations (13) and (16) may be combined, so that Equation (18) can be written 
as: 

Mgh' = aoMgh - Mg~ns2kw(R(2g)' iZ/~8)"h'4t3")~'0 (20) 
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0.05 

0 
0 200 400 600 800 1000 

FIGURE 6 Rebound heights of two projectiles(nos. 1 and 2 in Table I), made of steel, and the ball no. 3, all 
presenting the same diameter ofcurvature(4mm), only the mass being changed. Experimental data (symbols) 
are in good agreement with corresponding predicted curves (heavy lines). Other computed curves have been 
drawn to demonstrate the behaviour if the load is changed at comtant contact geometry. 
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0.55 
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Diameter (mm) 
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F I G U R E  7 Rebound heights of two projectiles(nos. 3 and 4 in Table 1). made ofsteel. and the ball no. 3. all 
presenting the same mass (0.262g). only the diameter of curvature being changed. Experimental data 
(symbo1s)are in good agreement with corresponding predicted curves (heavy lines). Other computed curves 
have been drawn to exhibit clearly the behaviour if the contact geometry is changed at constant mass. 

and when h is equal to the critical value h,, then h‘ = 0, so that the previous Equation 
(20) becomes: 

(21) 0 = aoMgh,  - M g 7 ~ ~ ~ k ~ ( R ( 2 ~ ) ” ~ ~ ) n h r ( ~ + ~ ~ ’ ” ~  

Mgh’ = a o M g h  - a0Mghch(4+3n) ‘10  

So, it  can be easily deduced from Equations (20) and (21): 

(22) 

and to rewrite the Equation (22) as: 

Mgh’  = mo M g h  - rh(4 + 3 n ) / 1 0  

where the parameter r regroups the geometry of the contact and elactic and superficial 
properties of the material tested. So, when the critical release altitude is assessed 
accurately, i.e. when h = h, or h‘ = 0, the previous Equation (21) allows us to express the 
value of the parameter r as a function of this critical release altitude, h,: 

a. Mgh, = rh,f4 + ”)” (24) 

As a consequence, the authors think that the more important result of this study 
is to show that some rebound experiments, with a few different-sized polished 
balls colliding on clean surfaces of a rubber-like material, and also on dusted 
surfaces in order to measure the resilience, allows one to determine the exponent n 
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18 M. BARQUINS AND J.-C. CHARMET 

(Equation (7), which describes, as already written, the viscoelastic b e h a v i o ~ r ~ * ' ~ * ~ ~  of 
the material tested), n representing the power frequency variation of the imaginary part 
of the complex Young's modulus in a large range of frequencies or/and crack 
propagation speeds. 

Indeed, from Equations (23) and (24), it can be written: 

with: 

f l =  (4 + 3n)/10 (26) 
So, from release altitudes, h, and corresponding rebound heights, h', critical rebound 

height values, h,, and the resilience, a,, of the rubber-like material tested, the slope, fl, of 
the rectilinear curve representing Equation (25) allows one to calculate the parameter n 
which characterizes the viscoelastic behaviour. Figure 8 regroups all the experimental 
points measured on the cleaned, adhesive natural rubber surface (data of curve I of Fig. 
4 and data of Fig. 6 and 7). Linear regression of all the points gives j-3 = 0.564 so that, 
using Equation (26), n takes the value n = 0.546 which is in close agreement with the 
value n = 0.55 previously deduced from recent rolling experiments on the same rubber 
sample2' (Fig. 2) and used to draw computed curves on Figures 4,6 and 7. In fact, it is 
possible now to point out that the a priori knowledge of the exponent n was not 
necessary to draw computed curves on Figures 4,6  and 7. The only required condition 

0.9 

0.7 1 
0.3 

OSS f 
FIGURE 8 Master curve, in log-log coordinates, regrouping all the adhesive rebound critical heights 
measured (data from Figures 4,6 and 7), which allows one to determine from the slope, /3, of this rectilinear 
curve, the parameter n characterizing the viscoelastic behaviour of the natural rubber sample tested. 
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REBOUND OF A RIGID BALL ON A RUBBER SURFACE 19 

is that this exponent n exists in a large range of crack propagation speeds in opening 
mode. 

CONCLUSION 

The results of measurement of the rebound heights of steel balls and projectiles on the 
flat and smooth surface of a soft natural rubber sample and the simple energy balance 
theory proposed to confirm experimental data, allows one to conclude that: 1) the 
proposed theoretical model is valid; 2) this model permits one to evaluate the Dupre 
energy of adhesion for short contact time and most importantly 3) this rebound method 
allows a much better knowledge of the viscoelastic behaviour of rubber-like materials 
by the determination of the power law in crack propagation speed of the dissipative 
energy in the bulk. 
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